Abstract

A low-profile (LP) metasurface antenna is proposed for broadband circularly polarized (CP) operations. The metasurface radiator, formed by a 5 × 5 array of square patches, has a microstrip line fed at its bottom through a shorted annular-ring slot centered on the ground plane. First, the characteristic mode analysis (CMA) methodology is employed to examine the intrinsic modes of the metasurface. Subsequently, a pair of mutually orthogonal modes is selected and excited by the feeding structure with a 90° phase difference to produce CP radiation. For the purpose of verification, a prototype antenna is developed, and the obtained data reveal that the antenna exhibits an impedance bandwidth of 43.9% ranging from 4.8 to 7.5 GHz (S11<−10 dB). The 3-dB axial ratio bandwidth is 22.2% in the range of 5.6–7 GHz, among which a satisfactory left-handed CP radiation is achieved, and the maximum gain in the broadside direction reaches 9.3 dBic at 6.9 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.