Abstract

This paper describes a low-power portable sensor interface dedicated to sensing and processing electrocardiogram (ECG) signals. Dry electrodes were employed in this ECG sensor, which eliminates the need of conductive gel and avoids complicated and mandatory skin preparation before electrode attachment. This ECG sensor system consists of two ICs, an analog front-end (AFE) and a successive approximation register analog-to-digital converter (SAR ADC) containing a relaxation oscillator. This proposed design was fabricated in a 0.18 μm 1P6M standard CMOS process. The AFE for extracting the biopotential signals is essential in this ECG sensor. In measurements, the AFE obtains a mid-band gain of 45 dB, a bandwidth from 0.6 to 160 Hz, and a total input referred noise of 2.8 μV rms while consuming 1 μW from the 1.8 V supply. The noise efficiency factor (NEF) of our design is 3.4. After conditioning, the amplified ECG signal is digitized by a 12-bit SAR ADC with 61.8 dB SNDR and 220 fJ/conversion-step. Finally, a complete ECG sensor interface with three dry copper electrodes is demonstrated in real-word setting, showing successful recordings of a capture ECG waveform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.