Abstract
Carbon nanotube field-effect transistors (CNT-FETs) have shown great promise in infrared image detection due to their high mobility, low cost, and compatibility with silicon-based technologies. This paper presents the design and simulation of a column-level analog front-end (AFE) circuit tailored for carbon-based short-wave infrared (SWIR) photodetectors. The AFE integrates a Capacitor Trans-impedance Amplifier (CTIA) for current-to-voltage conversion, coupled with Correlated Double Sampling (CDS) for noise reduction and operational amplifier offset suppression. A 10-bit/125 kHz Successive Approximation analog-to-digital converter (SAR ADC) completes the signal processing chain, achieving rail-to-rail input/output with minimized component count. Fabricated using 0.18 μm CMOS technology, the AFE demonstrates a high signal-to-noise ratio (SNR) of 59.27 dB and an Effective Number of Bits (ENOB) of 9.35, with a detectable current range from 500 pA to 100.5 nA and a total power consumption of 7.5 mW. These results confirm the suitability of the proposed AFE for high-precision, low-power SWIR detection systems, with potential applications in medical imaging, night vision, and autonomous driving systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.