Abstract

In this paper, a low-power full-band low-noise amplifier (FB-LNA) for ultra-wideband applications is presented. The proposed FB-LNA uses a stagger-tuning technique to extend the full bandwidth from 3.1 to 10.6 GHz. A current-reused architecture is employed to decrease the power consumption. By using an input common-gate stage, the input resistance of 50 Ω can be obtained without an extra input-matching network. The output matching is achieved by cascading an output common-drain stage. FB-LNA was implemented with a TSMC 0.18-μm CMOS process. On-wafer measurement shows an average power gain of 9.7 dB within the full operation band. The input reflection coefficient and the output reflection coefficient are both less than -10 dB over the entire band. The noise figure of the full band remained under 7 dB with a minimum value of 5.27 dB. The linearity of input third-order intercept point is -2.23 dBm. The power consumptions at 1.5-V supply voltage without an output buffer is 4.5 mW. The chip area occupies 1.17 × 0.88 mm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.