Abstract

BackgroundEpidermal growth factor receptor (EGFR) and epidermal growth factor receptor pathway substrate 8 (Eps8) have been widely reported to be expressed in various tumors. Eps8 is an important active kinase substrate of EGFR that directly binds to the juxtamembrane (JXM) domain of EGFR to form an EGFR/Eps8 complex. The EGFR/Eps8 complex is involved in regulating cancer progression and might be an ideal target for antitumor therapy. This study focused on the screening of small-molecule inhibitors that target the EGFR/Eps8 complex in breast cancer and non-small cell lung cancer (NSCLC).MethodsIn silico virtual screening was used to identify small-molecule EGFR/Eps8 complex inhibitors. These compounds were screened for the inhibition of A549 and BT549 cell viability. The direct interaction between EGFR and Eps8 was measured using coimmunoprecipitation (CoIP) and JXM domain replacement assays. The antitumor effects of the inhibitors were analyzed in cancer cells and xenograft models. An acute toxicity study of EE02 was performed in a mouse model. In addition, the effect of the EE02 inhibitor on the protein expression of elements downstream of the EGFR/Eps8 complex was determined by western blotting and protein chip assays.ResultsIn this study of nearly 390,000 compounds screened by virtual database screening, the top 29 compounds were identified as candidate small-molecule EGFR/Eps8 complex inhibitors and evaluated by using cell-based assays. The compound EE02 was identified as the best match to our selection criteria. Further investigation demonstrated that EE02 directly bound to the JXM domain of EGFR and disrupted EGFR/Eps8 complex formation. EE02 selectively suppressed growth and induced apoptosis in EGFR-positive and Eps8-positive breast cancer and NSCLC cells. More importantly, the PI3K/Akt/mTOR and MAPK/Erk pathways downstream of the EGFR/Eps8 complex were suppressed by EE02. In addition, the suppressive effect of EE02 on tumor growth in vivo was comparable to that of erlotinib at the same dose.ConclusionsWe identified EE02 as an EGFR/Eps8 complex inhibitor that demonstrated promising antitumor effects in breast cancer and NSCLC. Our data suggest that the EGFR/Eps8 complex offers a novel cancer drug target.

Highlights

  • Epidermal growth factor receptor (EGFR) and epidermal growth factor receptor pathway substrate 8 (Eps8) have been widely reported to be expressed in various tumors

  • We report the discovery of an EGFR/ Eps8 complex small-molecule inhibitor through virtual database screening

  • We hypothesized that a small molecule that binds to the JXM domain of EGFR will compete with EPS8, blocking the EGFR/ EPS8 interaction

Read more

Summary

Introduction

Epidermal growth factor receptor (EGFR) and epidermal growth factor receptor pathway substrate 8 (Eps8) have been widely reported to be expressed in various tumors. Eps is an important active kinase substrate of EGFR that directly binds to the juxtamembrane (JXM) domain of EGFR to form an EGFR/Eps complex. The EGFR/ Eps complex is involved in regulating cancer progression and might be an ideal target for antitumor therapy. This study focused on the screening of small-molecule inhibitors that target the EGFR/Eps complex in breast cancer and non-small cell lung cancer (NSCLC). EGFR regulates differentiation, apoptosis, cell cycle progression, development, and transcription [9,10,11]. EGFR hyperactivity, caused either by mutation or overexpression of the ligand or receptor, contributes to a variety of human cancers [12]. EGFR consists of an extracellular domain, a single hydrophobic transmembrane segment, an intracellular portion with a juxtamembrane (JXM) segment, a protein kinase domain, and a carboxyterminal tail [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call