Abstract

We report the discovery of 2M1222−57 as a low-mass, pre-main-sequence (PMS) eclipsing binary (EB) in the Lower Centaurus Crux (LCC) association for which, using Gaia parallaxes and proper motions with a neural net age estimator, we determine an age of 16.2 ± 2.2 Myr. The broadband spectral energy distribution (SED) shows clear excess at ≳10 μm indicative of a circumbinary disk, and new speckle imaging observations reveal a faint, tertiary companion separated by ∼100 au. Hα emission is modulated on the orbital period, consistent with theoretical models of orbitally pulsed accretion streams reaching from the inner disk edge to the central stars. From a joint analysis of spectroscopically determined radial velocities and TESS light curves, together with additional tight constraints provided by the SED and the Gaia parallax, we measure masses for the eclipsing stars of 0.74 M ⊙ and 0.67 M ⊙; radii of 0.98 R ⊙ and 0.94 R ⊙; and effective temperatures of 3750 K and 3645 K. The masses and radii of both stars are measured to an accuracy of ∼1%. The measured radii are inflated, and the temperatures suppressed, relative to predictions of standard PMS evolutionary models at the age of LCC; also, the Li abundances are ∼2 dex less depleted than predicted by those models. However, models that account for the global and internal effects of surface magnetic fields are able to simultaneously reproduce the measured radii, temperatures, and Li abundances at an age of 17.0 ± 0.5 Myr. Altogether, the 2M1222−57 system presents very strong evidence that magnetic activity in young stars alters both their global properties and the physics of their interiors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call