Abstract

Germanium (Ge)-based metal-oxide-semiconductor field-effect transistors are a promising candidate for high performance, low power electronics at the 7 nm technology node and beyond. However, the availability of high quality gate oxide/Ge interfaces that provide low leakage current density and equivalent oxide thickness (EOT), robust scalability, and acceptable interface state density (D(it)) has emerged as one of the most challenging hurdles in the development of such devices. Here we demonstrate and present detailed electrical characterization of a high-κ epitaxial oxide gate stack based on crystalline SrHfO3 grown on Ge (001) by atomic layer deposition. Metal-oxide-Ge capacitor structures show extremely low gate leakage, small and scalable EOT, and good and reducible D(it). Detailed growth strategies and postgrowth annealing schemes are demonstrated to reduce Dit. The physical mechanisms behind these phenomena are studied and suggest approaches for further reduction of D(it).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.