Abstract

Target tracking applications in wireless sensor networks need to achieve energy efficiency, tracking accuracy, and certain real-time constraints in response to fast-moving targets. From a layer view, an energy-efficient cross-layer communication protocol that consists of a medium access control layer and network routing layer is necessary for joint optimization. Due to the interference and contention over the wireless medium, the limited resources of battery-operated sensor nodes, and the dynamic topology of large-scale networks, this cross-layer design becomes a challenging task. In this research, we exploit a cluster routing algorithm over large-scale networks and propose a low-duty-cycle medium access control (MAC) algorithm to reduce collision, idle-listening, and overhearing. In addition, our work focuses on the joint optimization of routing and a MAC strategy for achieving a good trade-off between low delay, energy efficiency, and tracking accuracy. To deploy this protocol in a real tracking application, we also propose a clustering synchronization procedure that does not require distributing the global timing information over the complete network to achieve network-wide time synchronization. An analytical model and extensive simulations are proposed to evaluate and compare the performance of our work with existing protocols. Simulation and analysis results show that our approach achieves better communication delay and thus better tracking error while maintaining reasonable energy consumption compared to other cases.

Highlights

  • Recent developments in sensor techniques have made wireless sensor networks (WSNs) available to many application domains

  • Our work focuses on the joint optimization of routing and medium access control (MAC) strategies to achieve a good trade-off between low delay, energy efficiency, and tracking accuracy

  • (2) We present an analysis of delay produced by the CSP and compare to the other approaches of the same category (CSP using B-MAC [13] as an alternative low-duty-cycle algorithm and the CSP using Adaptive Routing Protocol with Energy Efficiency and Event Clustering for Wireless Sensor Networks (ARPEES) [14] as a routing strategy)

Read more

Summary

Introduction

Recent developments in sensor techniques have made wireless sensor networks (WSNs) available to many application domains. VigilNet [1] is one of the very few real-world tracking systems that simultaneously addresses energy efficiency, end-to-end real-time tracking, and accuracy by implementing a complete communication protocol of B-MAC [13] (as a low-duty-cycle MAC) associated with a Voronoi diagram [22] (as a routing algorithm) This system divides end-to-end delay into multiple sub-deadlines, each guaranteed by one system component. The long-preamble approach of B-MAC still causes energy inefficiency and unnecessary delay compared to shortpreamble approaches, especially when the hop count is high All these issues challenge us with the question: How can one design a low-delay communication protocol of lowduty-cycle MAC, routing, and synchronization schemes to provide good tracking accuracy while maintaining energy efficiency?

System model
CSP communication protocol
Synchronization during target detection and clustering
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.