Abstract

<p>Aeolian sediment transport has been seen to occur on Mars as well as other extraterrestrial environments, generating ripples and dunes as on Earth. The search for terrestrial analogues of planetary bedforms, as well as environmental simulation experiments able to reproduce their formation in planetary conditions, are powerful ways to question our understanding of geomorphological processes towards unusual parameter sets. Here, using sediment transport laboratory experiments performed in a closed-circuit wind tunnel placed in a vacuum chamber, which is operated at extremely low pressures, we show that Martian conditions belong to a previously unexplored saltation regime. The saltation transport wind speed is quantitatively predicted by the state-of-the art models up to a density ratio between grain and air of 4x10<sup>5</sup>, but unexpectedly falls, above this cross-over point, to much lower values than expected. By contrast, impact ripples, whose emergence is continuously observed on the granular bed over the whole pressure range investigated, display characteristic wavelength and propagation velocity essentially independent of the pressure. Testing these findings against existing models suggests that sediment transport at low Reynolds number but high grain to fluid density ratio may be dominated by collective effects associated with grain inertia in the granular collisional layer.</p> <p>Ref: B. Andreotti, P. Claudin, J.J. Iversen, J.P. Merrison and K.R. Rasmussen, Proc. Natl. Acad. Sci. USA <strong>118</strong>, e2012386118 (2021).</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.