Abstract

AbstractA Steiner quadruple system of order 2n is Semi‐Boolean (SBQS(2n) in short) if all its derived triple systems are isomorphic to the point‐line design associated with the projective geometry PG(n−1, 2). We prove by means of explicit constructions that for any n, up to isomorphism, there exist at least 2⌊ 3(n−4)/2⌋ regular and resolvable SBQS(2n). © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 229–239, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jcd.10050

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.