Abstract
The growth exponent for loop-erased or Laplacian random walk on the integer lattice is dened by saying that the expected time to reach the sphere of radius n is of order n .W e prove that in two dimensions, the growth exponent is strictly greater than one. The proof uses a known estimate on the third moment of the escape probability and an improvement on the discrete Beurling projection theorem. R esum e. L'exposant de croissance pour la marche al eatoire a boucles eac ees ou \laplacienne sur le r eseau Z d est d eni de la mani ere suivante : le nombre moyen de pas au moment o u la marche issue de l'origine atteint la sph ere de rayon nest d'ordre n lorsque n tend vers l'inni. Nous montrons que lorsque d = 2, l'exposant de croissance est strictement sup erieur a 1. La preuve utilise une estimation connue concernant le moment d'ordre trois de la probabilit e de fuite, ainsi qu'un ranement de la version discr etis ee du th eor eme de projection de Beurling. AMS Subject Classication. 60J15.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.