Abstract

While 2D Gibbsian particle systems might exhibit orientational order resulting in a lattice-like structure, these particle systems do not exhibit positional order if the interaction between particles satisfies some weak assumptions. Here we investigate to which extent particles within a box of size 2n×2n may fluctuate from their ideal lattice position. We show that particles near the center of the box typically show a displacement at least of order logn. Thus we extend recent results on the hard disk model to particle systems with fairly arbitrary particle spins and interaction. Our result applies to models such as rather general continuum Potts type models, e.g. with Widom–Rowlinson or Lenard-Jones-type interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.