Abstract
The acyclic matching number of a graph G is the largest size of an acyclic matching in G, that is, a matching M in G such that the subgraph of G induced by the vertices incident to edges in M is a forest. We show that the acyclic matching number of a connected subcubic graph G with m edges is at least m∕6 except for two graphs of order 5 and 6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.