Abstract
For a nonzero integer $d$, a celebrated Siegel Theorem says that the number $N(d)$ of integral solutions of Mordell equation $y^2+x^3=d$ is finite. We find a lower bound for $N(d)$, showing that the number of solutions of Mordell equation increases dramatically. We also prove that for any positive integer $n$, there is an integer square multiply represented by Mordell equations, i.e., $k^2=y_1^2+x_1^3=y_2^2+x_2^3=\cdots =y_n^2+x_n^3$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.