Abstract

Large quantities of fruit waste are generated from agricultural processes worldwide. This waste is often simply dumped into landfills or the ocean. Fruit waste has high levels of sugars, including sucrose, glucose, and fructose, that can be fermented for bioethanol production. However, some fruit wastes, such as citrus peel waste (CPW), contain compounds that can inhibit fermentation and should be removed for efficient bioethanol production. We developed a novel approach for converting single-source CPW (i.e., orange, mandarin, grapefruit, lemon, or lime) or CPW in combination with other fruit waste (i.e., banana peel, apple pomace, and pear waste) to produce bioethanol. Two in-house enzymes were produced from Avicel and CPW and were tested with fruit waste at 12–15% (w/v) solid loading. The rates of enzymatic conversion of fruit waste to fermentable sugars were approximately 90% for all feedstocks after 48h. We also designed a d-limonene removal column (LRC) that successfully removed this inhibitor from the fruit waste. When the LRC was coupled with an immobilized cell reactor (ICR), yeast fermentation resulted in ethanol concentrations (14.4–29.5g/L) and yields (90.2–93.1%) that were 12-fold greater than products from ICR fermentation alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.