Abstract
Hematite nanoparticles (α-Fe2O3 NPs) were successfully synthesized by a low-cost solvent-free reaction using Ferrous sulfate waste (FeSO4·7H2O) and pyrite (FeS2) as raw materials and employed for the decolorization of Methyl Orange by the photo-Fenton system. The properties of α-Fe2O3 NPs before and after photo-Fenton reaction were characterized by X-ray powder diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectrum and X-ray photoelectron spectroscopy (XPS), and the optical properties of α-Fe2O3 NPs were analyzed by UV-vis diffuse reflectance spectra (UV-vis DRS) and Photoluminescence (PL) spectra. The analytic results showed that the as-formed samples having an average diameter of ~50nm exhibit pure phase hematite with sphere structure. Besides, little differences were found by comparing the characterization data of the particles before and after the photo-Fenton reaction, indicating that the photo-Fenton reaction was carried out in solution rather than on the surface of α-Fe2O3 NPs. A 24 central composite design (CCD) coupled with response surface methodology (RSM) was applied to evaluate and optimize the important variables. A significant quadratic model (P-value<0.0001, R2=0.9664) was derived using an analysis of variance (ANOVA), which was adequate to perform the process variables optimization. The optimal process conditions were performed to be 395nm of the light wavelength, pH 3.0, 5mmol/L H2O2 and 1g/L α-Fe2O3, and the decolorization efficiency of methyl orange was 99.55% at 4min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.