Abstract

A low-cost, sustainable and sensitive method for the continuous detection and quantification of Tyrosine (Tyr), a valuable metabolic biomarker, in biological fluids would present a valuable platform to aid patients and medical personnel in dietary management and the diagnosis and monitoring of metabolic and neurodegenerative disease. This work, therefore, presents a facile approach for the development of a graphene oxide (GO) - chitosan (CS) screen-printed carbon electrode (SPCE) (GO-CS/SPCE) on a flexible polyvinyl chloride (PVC) substrate, for the electrochemical detection of Tyr. The low-cost, disposable sensor was achieved by successfully immobilizing a homogenous GO-CS film at the surface of the SPCE via a simple ultrasound-assisted chemical reaction strategy. GO-CS was chosen as the sensitive nanocomposite film due to excellent electrochemical sensing properties, as well as the cost-effective, disposable and biocompatible nature of these nanomaterials. The GO-CS/SPCE demonstrated a wide linear range of 30-500 $\mu M$ with a sensitivity of 0.03 $\mu A\mu M^{-1}$ and good reproducibility, highlighting the potential of GO-CS/SPCE as a low-cost, disposable and practical sensor for Tyr point of care (POC) testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.