Abstract

This paper presents a compact and low-cost balanced bandpass filter (BPF) operating at 4.9 GHz with high selectivity using mixed coupled ‘U’ shaped resonators, parallel coupled feed line, open and centrally loaded short circuited stubs, respectively. The odd–even mode decoupling scheme and the weakly coupled resonator concepts are utilized for the analysis and validation of differential mode (DM) and common mode (CM) equivalent circuits of the proposed BPF. The passband CM response of the balanced BPF is suppressed above 30 dB by employing grounded stubs in the symmetry plane, which converts the CM response to an all stop characteristic. The second harmonics generated by the BPF is also suppressed using open stubs located near the feed lines. The proposed balanced BPF is fabricated on an FR4 substrate (εr = 4.4, h = 1.6 mm, tan δ = 0.02), which provides 10.7% measured 3 dB fractional bandwidth (FBW) and minimum 1.2 dB insertion loss in the passband (4.7–5.2 GHz). A good agreement is found between the simulated and measured results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.