Abstract

Location fingerprinting is a technique employed when Global Positioning System (GPS) positioning breaks down within indoor environments. Since Location Service Providers (LSPs) would implicitly have access to such information, preserving user privacy has become a challenging issue in location estimation systems. This paper proposes a low-complexity k-anonymity approach for preserving the privacy of user location and trajectory, in which real location/trajectory data is hidden within k fake locations/trajectories held by the LSP, without degrading overall localization accuracy. To this end, three novel location privacy preserving methods and a trajectory privacy preserving algorithm are outlined. The fake trajectories are generated so as to exhibit characteristics of the user’s real trajectory. In the proposed method, no initial knowledge of the environment or location of the Access Points (APs) is required in order for the user to generate the fake location/trajectory. Moreover, the LSP is able to preserve privacy of the fingerprinting database from the users. The proposed approaches are evaluated in both simulation and experimental testing, with the proposed methods outperforming other well-known k-anonymity methods. The method further exhibits a lower implementation complexity and higher movement similarity (of up to 88%) between the real and fake trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.