Abstract

The problem of attitude control for rigid spacecraft under the attitude and angular velocity constraints is investigated in this study. Particularly, a simple structure constrained proportional-derivative (PD)-like control is proposed which contains two portions. The first portion is a conventional PD control to provide convergence of the system states; whereas the second portion provides the desired performance specifications such as convergence rate, overshoot and steady-state bound for attitude and rotation velocity to improve the attitude pointing accuracy and pointing stability. The distinctive property of the suggested constrained control method is to ensure the desired performance in transient and steady-state phases for all the system states. It also possesses much simpler structure compared to the existing constrained control techniques since it is based on a new methodology. The simulation results conducted on a rigid spacecraft verify the efficiency of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call