Abstract

Spectroscopic properties of chymotrypsin and model compounds indicate that a low-barrier hydrogen bond participates in the mechanism of serine protease action. A low-barrier hydrogen bond between N delta 1 of His57 and the beta-carboxyl group of Asp102 in chymotrypsin can facilitate the formation of the tetrahedral adduct, and the nuclear magnetic resonance properties of this proton indicate that it is a low-barrier hydrogen bond. These conclusions are supported by the chemical shift of this proton, the deuterium isotope effect on the chemical shift, and the properties of hydrogen-bonded model compounds in organic solvents, including the hydrogen bond in cis-urocanic acid, in which the imidazole ring is internally hydrogen-bonded to the carboxyl group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.