Abstract
Abstract Scaling problems and limitations of conventional silicon transistors have led the designers to exploit novel nano-technologies. One of the most promising and feasible nano-technologies is CNT (Carbon Nanotube) based transistors. In this paper, a high-speed and energy-efficient CNFET (Carbon Nanotube Field Effect Transistor) based Full Adder cell is proposed for nanotechnology. This design is simulated in various supply voltages, frequencies and load capacitors using HSPICE circuit simulator. Significant improvement is achieved in terms of speed and PDP (Power-Delay-Product) in comparison with other classical and state-of-the-art CMOS and CNFET-based designs, existing in the literature. The proposed Full Adder can also drive large load capacitance and works properly in low supply voltages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.