Abstract

In the effort to achieve low access energy non-volatile memory, challenges are encountered in sensing data at low power supply voltage. This work presents the design of a ferroelectric random access memory (FRAM) as a promising candidate for this need. The challenges of sensing diminishingly small charge and developing circuits compatible with the scaling of FRAM technology to low voltage and more advanced CMOS nodes are addressed with a time-to-digital sensing scheme. In this work, the 1T1C bitcell signal is analyzed, the circuits for a TDC-based sensing network are presented, and the implementation and operation details of a 1 Mb chip are described. The 1 Mb 1T1C FRAM fabricated in 130 nm CMOS operates from 1.5 V to 1.0 V with corresponding access energy from 19.2 pJ to 9.8 pJ per bit. This approach is generalized to a variety of non-volatile memory technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.