Abstract

Intracellular electrical recordings in an in vitro slice preparation of the brainstem medial pontine reticular formation, a region thought to be important in mediation of desynchronized sleep phenomena, demonstrate a population of neurons that have a calcium-dependent, low threshold spike. This low threshold spike was inactivated at relatively depolarized membrane potential levels and, when this spike was deinactivated, it induced a burst of action potentials. The membrane potential dependence of the spike may underlie changes in action potential firing patterns associated with behavioral state change because the baseline membrane potential in neurons of the medial pontine reticular population depolarizes during passage from waking and slow wave sleep to desynchronized sleep, which is characterized by the absence of burst firing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.