Abstract

Zn doped SnO2 nanoparticles have been fabricated through the low temperature situ precipitation technique. The morphology, structure and chemical composition of the nanoparticles are characterized using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), Thermogravimetric-differential scanning calorimetry (TG–DSC) and UV–vis absorption spectroscopy. The products were also characterized by X-ray diffraction (XRD) and X-photoelectron spectrum (XPS), and the results indicated that Sn4+ ions were successfully substituted by Zn2+. Their photocatalytic activities were evaluated using rhodamine B (RhB) as a decomposition objective. The results show that the Zn doped SnO2 display higher photocatalytic activities in the degradation of RhB than pure ZnO products by exposure to UV irradiation. A possible reason of the increased photocatalytic activity of Zn doped SnO2 is attributed to intrinsic oxygen vacancies in nanoparticles and extrinsic defect due to Zn hole doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.