Abstract
Synthesis of rare earth-based alloys by the ORD technique consists in the reduction of rare earth oxides in a melt of calcium under argon, and simultaneous diffusion–reaction of the just formed rare earth metal with the other elements. This method has been applied with success to numerous ternary borides containing transition metals such as the magnetic alloys Y2Co14B, LnCo4B, and YCo3B2. By using a small excess of Ca, boride particles grow in a viscous slurry media containing unreacted (melted) Ca and nanosize CaO particles. Single phase boride alloys can be obtained at 1000°C as loose micrometer-size particles of very high crystal quality as confirmed by the sharp diffraction peaks on the corresponding X-ray diagrams. Particles can be easily recovered by gentle washing in diluted weak acid solution, and dried under vacuum at room temperature. This rather low temperature technique is particularly adapted to the synthesis of incongruent melting phases, as well as for the alloys containing volatile rare earth elements (Sm, Yb, Tb,…).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.