Abstract

Dural defects and subsequent complications, including cerebrospinal fluid (CSF) leakage, are common in both spine surgery and neurosurgery, and existing clinical treatments are still unsatisfactory. In this study, a tissue-adhesive and low-swelling hydrogel sealant comprising gelatin and o-phthalaldehyde (OPA)-terminated 4-armed poly(ethylene glycol) (4aPEG-OPA) is developed via the OPA/amine condensation reaction. The hydrogel shows an adhesive strength of 79.9±12.0kPa on porcine casing and a burst pressure of 208.0±38.0cmH2O. The hydrogel exhibits a low swelling ratio at physiological conditions, avoiding nerve compression in the limited spinal and intracranial spaces. In rat and rabbit models of lumbar and cerebral dural defects, the 4aPEG-OPA/gelatin hydrogel achieves excellent performance in dural defect sealing and preventing CSF leakage. Moreover, local inflammation, epidural fibrosis and postoperative adhesion in the defect areas are markedly reduced. Thus, these findings establish the strong potential of the hydrogel sealant for the effective watertight closure of dural defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.