Abstract
Effective communication and echolocation depends strongly upon the coherence of the channel through which the signal is propagated. Under certain conditions, the average coherence or equivalently, the spreading of a random channel may be described by a scattering function (SF). This represents a second order (energy) measure of the average delay, Doppler, and more generally, the spatial (azimuthal) spread that the signal experiences. The SF is analogous to the point spread function (PSF) discussed in the image processing literature and likewise describes the amount of "blurring" imposed upon the signal or scene transmitted. The SF will be briefly reviewed and its measurement by both direct (high resolution channel probing) and indirect (deconvolution) methods will be discussed. A new direct method using specially designed waveform pairs and a twin or uncertainty product (UP) receiver structure is introduced. Unlike high resolution matched filter implementations for direct probing that are limited by the fixed volume constraint of ambiguity functions, the UP receiver produces vanishing sidelobes and hence more nearly approximates a desirable two-dimensional delta characteristic. The improvement gained in SF measurement is illustrated by the results of an experiment in which the UP receiver and traditional matched filter implementations were used to directly probe an ocean multipath channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.