Abstract

Abnormal in vivo Total Knee Replacement (TKR) kinetics is influenced by a range of factors, particularly by changes to the knee's geometric parameters such as the patellar tendon moment arm (PTMA). In this study, ground reaction force (GRF) measurements were combined with simultaneous fluoroscopic image measurements to investigate the relationship between abnormal TKR kinetics and geometric parameters. Nine Scorpio Cruciate Retaining (CR) TKR (Stryker, Newbury, UK), nine Scorpio Posterior Stabilized (PS) TKR and seven normal subjects performed a step-up activity on a forceplate in view of a fluoroscope. The TKR subjects were part of a larger ongoing randomised controlled trial. The maximum external knee flexion moment was 22.0% lower in the Scorpio PS group compared to the Scorpio CR group. No significant differences in PTMA were found between the groups. The Scorpio PS had a low-riding patella, with a 30.7% reduction in patellar height compared to the Scorpio CR. This was probably due to using a thick tibial insert after PCL release in the PS, and led to an 8° increase in patellar flexion angle which altered the patellar mechanism and reduced quadriceps' mechanical advantage. Consequently, PS subjects stepped-up more cautiously with a reduced knee flexion moment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.