Abstract
We propose a low-rank tensor approach to approximate linear transport and nonlinear Vlasov solutions and their associated flow maps. The approach takes advantage of the fact that the differential operators in the Vlasov equation are tensor friendly, based on which we propose a novel way to dynamically and adaptively build up low-rank solution basis by adding new basis functions from discretization of the PDE, and removing basis from an SVD-type truncation procedure. For the discretization, we adopt a high order finite difference spatial discretization and a second order strong stability preserving multi-step time discretization. We apply the same procedure to evolve the dynamics of the flow map in a low-rank fashion, which proves to be advantageous when the flow map enjoys the low rank structure, while the solution suffers from high rank or displays filamentation structures. Hierarchical Tucker decomposition is adopted for high dimensional problems. An extensive set of linear and nonlinear Vlasov test examples are performed to show the high order spatial and temporal convergence of the algorithm with mesh refinement up to SVD-type truncation, the significant computational savings of the proposed low-rank approach especially for high dimensional problems, the improved performance of the flow map approach for solutions with filamentations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.