Abstract
Enhancing the wear ability and reducing the form factor often are among the major objectives in design of wearable platforms. Power optimization techniques will significantly reduce the form factor and/or will prolong the time intervals between recharges. In this paper, we propose an ultra low power programmable architecture based on Dynamic Time Warping specifically designed for wearable inertial sensors. The low power architecture performs the signal processing merely as fast as the production rate for the inertial sensors, and further considers the minimum bit resolution and the number of samples that are just enough to detect the movement of interest. Our results show that the power consumption for inertial based monitoring systems can be reduced by at least three orders of magnitude using our proposed architecture compared to the state-of-the-art low power microcontrollers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.