Abstract

An adaptive energy-harvesting circuit with low power dissipation is presented and demonstrated, which is useful for efficient ac/dc voltage conversion of a piezoelectric micropower generator. The circuit operates stand-alone, and it extracts the piezoelectric strain energy independent of the load and piezoelectric parameters without using any external sensor. The circuit consists of a voltage-doubler rectifier, a step-down switching converter, and an analog controller operating with a single supply voltage in the range of 2.5-15 V. The controller uses the piezoelectric voltage as a feedback and regulates the rectified voltage to adaptively improve the extracted power. The nonscalable power dissipation of the controller unit is less than 0.05 mW, and the efficiency of the circuit is about 60% for output power levels above 0.5 mW. Experimental verifications of the circuit show the following: 1) the circuit notably increases the extracted power from a piezoelectric element compared to a simple full-bridge diode rectifier without control circuitry, and 2) the efficiency of the circuit is dominantly determined by its switching converter. The simplicity of the circuit facilitates the development of efficient piezoelectric energy harvesters for low-power applications such as wireless sensors and portable devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.