Abstract

In this paper, a low power single-path bio-impedance (Bio-Z) measurement system for early detection of acute myocardial ischemia is presented. The fully integrated system consists of a current source, an amplifier, and an analog-to-digital converter (ADC). The system utilizes the in-phase and quadrature (I/Q) components to obtain the real and imaginary parts of the tissue impedance. To achieve this goal, the ADC has been used to separate the I/Q components in addition to digitizing the samples. This can lead to power and silicon area reduction. The proposed circuit exploits the benefits of capacitively-coupled instrumentation amplifier, including inherent DC cancellation, low power, low noise, and high linearity and is implemented in 0.18 µm CMOS technology with a 1 V power supply. This system is designed and tested using a pseudo-sine 2 µAP-P current with a frequency of 1 kHz. The system can measure an input impedance that varies over a range from 0.03-7.5 kΩ with a resolution of 0.766 Ωrms while consuming 2 µW power from the supply. The operation of the system is also shown in the recording of impedance variation with respiration and heartbeat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call