Abstract

Wearable technologies have established novel strategies for continuous electrocardiogram (ECG) monitoring, exploiting recent developments in sensors and integrated circuit technology. Advances in dry electrodes fabrication improved the growth of wearable devices. Herein, we present an on-chip integrated ECG signal acquisition system along with dry electrodes for wearable and long-term monitoring. Custom electrodes are fabricated using multi-walled carbon nanotube (MWCNT) and Polydimethylsiloxane (PDMS) composite on a flexible substrate. A $1.5~\mu \text{W}$ fully-differential operational transconductance amplifier (OTA) with a capacitive-resistive feedback network is designed in 130 nm CMOS process achieving a mid-band gain of 43.09 dB and an input-referred noise of $2.81~\mu \text{V}_{\textit {rms}}$ in the range from 0.175 Hz to 1.636 kHz. Reconfigurability of the lower cut-off frequency is achieved by controlling the bias voltage of the triple-well nMOS transistors acting as the feedback pseudoresistor. Electrodes with different surface area and MWCNT concentrations were investigated in a real-time ECG measurement scenario. The recorded signals achieve a high signal-to-noise ratio which spans from 35.7 dB to 38.6 dB with the increasing MWCNT concentration. Experimental results demonstrate that the proposed system allows for high performance and low-power ECG signal recording for the long-term and wearable applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.