Abstract

The design of a low-power, low-noise CMOS (complementary metal oxide semiconductor) amplifier is described. The amplifier was designed using the folded cascode configuration and was implemented on a 3- mu m double polysilicon process. The amplifier is part of a 128-channel charge amplifier array chip for use in the readout of radiation detectors with many channels. Aspects of the amplifier design such as bandwidth, pulse response, and noise are discussed, and the effects of individual transistors are shown, thereby relating circuit performance to process parameters. Circuit and radiation test results are included. The results show that a noise level as low as 670 electrons has been achieved with a risetime of 240 ns and a power density of less than 0.45 mW per channel.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.