Abstract

This paper presents a low-power analog front-end (AFE) photoplethysmography (PPG) sensor fabricated in 0.35 μm CMOS process. The AFE amplifies the weak photocurrent from the photodiode (PD) and converts it to a strong voltage at the output. In order to decrease the power consumption, the circuits are designed in subthreshold region; so the total biasing current of the AFE is 10 μ A. Since the large input DC photocurrent is a big issue for the PPG sensing circuit, we apply a DC photocurrent rejection technique by adding a DC current-cancellation loop to reject the large DC photocurrent up to 10 μA. In addition, a pseudo resistor is used to reduce the high-pass corner frequency below 0.5 Hz and Gm-C filter is adapted to reject the out-of-band noise higher than 16 Hz. For the whole sensor, the amplifier chain can achieve a total gain of 140 dBμ and an input integrated noise current of 68.87 pArms up to 16 Hz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call