Abstract
An energy-efficient fast start-up method for crystal oscillators is presented, which enables aggressive duty-cycled operation of IoT radios to minimize overall power consumption. A digitally controlled crystal oscillator using the proposed start-up technique in 90-nm CMOS is presented. Thanks to the dynamically adjusted load, the negative resistance is boosted, achieving a $13\times $ start-up time reduction and an overall power of $95\mu \text{W}$ for a 24-MHz crystal oscillator at 1 V. A fully autonomous feedback loop detects the oscillators envelop and adjusts the load capacitance at start-up. Thanks to the low-power start-up circuits, both the start-up time and the start-up energy are reduced. In addition, the robustness and versatility of the proposed method is verified by measuring quartz crystals with different frequencies and quality factors, as well as measuring against temperature, supply voltage, and load capacitance variations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.