Abstract

This paper proposes a low-power delta-sigma capacitance-to-digital converter (CDC) for a capacitive sensor. The input of the capacitive sensor employs a zoomed-in technique with the offset capacitor to extend the input capacitance range. The proposed CDC uses a third-order switched capacitor delta-sigma modulator to provide a digital output, based on a cascade of integrators with a feed forward (CIFF) structure. The current-starved operational transconductance amplifiers (OTAs) are applied in the delta-sigma modulator's first integrator to improve the current efficiency and reduce the power consumption. An auto-zeroing technique is used in the OTAs to reduce their offset and noise. The circuit was implemented in a 0.18-μm CMOS technology and occupies an area of 0.496 mm 2 . The measurable capacitance range of the CDC can be varied from 0 to 8 pF. In a measurement time of 0.8 ms, the delta-sigma CDC achieved a 12.7 effective number of bits while consuming 18.6-μA current from a 2-V supply voltage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.