Abstract

Monitoring of electrocorticography signals using multi-electrode array creates new opportunities for neural prosthetic applications. In this paper, we present a 32-channel recording ASIC that provides low-noise amplification and analog filtering. It also includes a 12-bit analog-to-digital conversion function, and offers programmable output rates through a serial peripheralinterface (SPI). The targeted application is a remote-powered wireless implantable ECoG recording system. Each recording channel has a measured 0.7 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\mu {\rm V_{\rm rms}}$</tex></formula> input-referred noise on a [0.5–300 Hz] bandwidth. The device was fabricated in a 0.35 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> complementary metal–oxide–semiconductor process for a total die area of 86 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\hbox {mm}} ^{2}$</tex></formula> with an analog power consumption limited to 134 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\mu {\rm W}$</tex></formula> per channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.