Abstract

We report a low-noise, high-signal-to-noise-ratio (SNR) balanced homodyne detector based on the standard transimpedance amplifier circuit and the inductance and capacitance combination for the measurement of the bright squeezed state in the range from 1 kHz to 100 kHz. A capacitance is mounted at the input end of the AC branch to prevent the DC photocurrent from entering the AC branch and avoid AC branch saturation. By adding a switch at the DC branch, the DC branch can be flexibly turned on and off on different occasions. When the switch is on, the DC output provides a monitor signal for laser beam alignment. When the switch is off, the electronic noise of the AC branch is greatly reduced at audio-frequency band due to immunity to the impedance of the DC branch, hence the SNR of the AC branch is significantly improved. As a result, the electronic noise of the AC branch is close to −125 dBm, and the maximum SNR of the AC branch is 48 dB with the incident power of 8 mW in the range from 1 kHz to 100 kHz. The developed photodetector paves a path for measuring the bright squeezed state at audio-frequency band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.