Abstract

As a hallmark of glioblastoma multiforme (GBM), CD44 plays a crucial role in promoting glioblastoma stem cell (GSC) stemness phenotypes and multiple drug resistance. The therapeutic potential of CD44 has been validated by the clinical successes of several CD44 inhibitors, including antibodies and hyaluronan-related drugs. We used systemsDock software to predict verbascoside as a candidate CD44 inhibitor. Microscale thermophoresis was used to confirm the interaction between CD44 and verbascoside. Four glioblastoma cell lines and a patient-derived glioblastoma cell line were used to test the influences of verbascoside on glioblastoma. CD44-overexpressing and CD44-knockout cell lines were also used. Real-time quantitative PCR and western blot analyses were performed. A xenograft mouse model was used to test verbascoside. Verbascoside bound to CD44 and suppressed its dimerization. By inhibiting CD44 dimerization, verbascoside decreased the release of the CD44 intracellular domain (CD44ICD) and suppressed the expression of CD44 downstream genes. Verbascoside treatment suppressed the stemness phenotypes of cells with high CD44 expression. In a mouse model of glioma, verbascoside treatment highly reduced the growth of intracranial tumours and inhibited CD44ICD release. Both stem cell marker and mesenchymal GBM subtype marker genes were down-regulated in verbascoside-treated mice. Verbascoside suppressed growth of glioblastoma cells by inhibiting CD44 dimerization. Stem cell-like cell properties and tumour cell growth were also suppressed by verbascoside, both in vitro and in vivo. Verbascoside significantly prolonged survival of xenografted mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.