Abstract

This paper presents a power electronics design for the piezoelectric actuators of an insect-scale flapping-wing robot, the RoboBee. The proposed design outputs four high-voltage drive signals tailored for the two bimorph actuators of the RoboBee in an alternating drive configuration. It utilizes fully integrated drive stage circuits with a novel highside gate driver to save chip area and meet the strict mass constraint of the RoboBee. Compared with previous integrated designs, it also boosts efficiency in delivering energy to the actuators and recovering unused energy by applying three power saving techniques, dynamic common mode adjustment, envelope tracking, and charge sharing. Using this design to energize four 15 nF capacitor loads with a 200 V and 100 Hz drive signal and tracking the control commands recorded from an actual flight experiment for the robot, we measure an average power consumption of 290 mW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.