Abstract

This article presents a low-loss silicon microelectrical mechanical system (MEMS) phase shifter operating in the 500-600 GHz band. The phase shifter consists of a 30-μm thick perforated silicon slab that is moved in and out of a waveguide in the E-plane with a large deflection MEMS actuator. By implementing different hexagonal patterns in the silicon slab, a stepped permittivity is created to impedance match, and thus, reduce return loss. When the silicon slab is inserted into the waveguide, the phase velocity of the incoming wave is decreased, thus resulting in different phase shifts depending on the position of the slab inside the waveguide. The MEMS phase shifter is fully actuated at around 50 V and can move up to ±95 μm, depending on the applied voltage. The insertion loss, when the maximum phase shift is achieved, is measured to be 1.8 dB, compared to a 1.6-dB insertion loss for a waveguide of equivalent length. The return loss is better than 18 dB for the desired band. The measured phase shift, with the slab fully inserted into the waveguide at 550 GHz was 145 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> . The MEMS phase shifter enables a variety of applications including phased array antenna systems with scanning capability for mapping of planetary surfaces with an electronically steerable antenna.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.