Abstract
We study the problem of joint low light image contrast enhancement and denoising using a statistical approach. The low light natural image in the band pass domain is modeled by statistically relating a Gaussian scale mixture model for the pristine image, to the low light image, through a detail loss coefficient and Gaussian noise. The detail loss coefficient is statistically described using a posterior distribution with respect to its estimate based on a prior contrast enhancement algorithm. We then design our low light enhancement and denoising (LLEAD) method by computing the minimum mean squared error estimate of the pristine image band pass coefficients. We create the Indian Institute of Science low light image dataset of well-lit and low light image pairs to learn the model parameters and evaluate our enhancement method. We show through extensive experiments on multiple datasets that our method helps better enhance the contrast while simultaneously controlling the noise when compared to other state of the art joint contrast enhancement and denoising methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.