Abstract

In this paper, a biped robot system for dynamic walking is presented. It has two 2-degree-of-freedom (DOF) lightweight legs and a 6-DOF hip. All the joint pulleys of the legs are driven by motors that are placed at the hip using steel cables. Since all the heavy motors are mounted at the hip, the biped robot has remarkably low-mass legs beyond the hip, which guarantees low inertia during walking at high speeds. Utilizing cable-amplification mechanisms, high stiffness and strength are achieved, resulting in better control performance compared to conventional direct-driven methods. Techniques are developed to estimate joint-angle errors caused by the elastic deformation of the cables. To achieve smooth control, we introduce the concept of a virtual leg, which is an imaginary leg connecting the hip joint and the ankle joint. A robust control approach based on the “virtual leg” is presented, which considers the variances of the virtual leg length during walking. Experiments are conducted to validate the effectiveness of the mechanical design and the proposed control approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call