Abstract

BackgroundKawasaki disease (KD) is a systemic vasculitis which may be associated with coronary artery aneurysms. A notable risk factor for the development of coronary artery aneurysms is resistance to intravenous immunoglobulin (IVIG) therapy, which comprises standard treatment for the acute phase of KD. The cause of IVIG resistance in KD is largely unknown; however, the contribution of genetic factors, especially variants in immune-related genes, has been suspected.MethodsTo explore genetic variants related to IVIG-unresponsiveness, we designated KD patients who did not respond to both first and second courses of IVIG therapy as IVIG-unresponsive patients. Using genomic DNA from 30 IVIG-unresponsive KD patients, we performed pooled genome sequencing targeting 39 immune-related cytokine receptor genes.ResultsThe single nucleotide variant (SNV), rs563535954 (located in the IL4R locus), was concentrated in IVIG-unresponsive KD patients. Individual genotyping showed that the minor allele of rs563535954 was present in 4/33 patients with IVIG-unresponsive KD, compared with 20/1063 individuals in the Japanese genome variation database (odds ratio = 7.19, 95% confidence interval 2.43–21.47). Furthermore, the minor allele of rs563535954 was absent in 42 KD patients who responded to IVIG treatment (P = 0.0337), indicating that a low-frequency variant, rs563535954, is associated with IVIG-unresponsiveness in KD patients. Although rs563535954 is located in the 3′-untranslated region of IL4R, there was no alternation in IL4R expression associated with the mior allele of rs563535954. However, IVIG-unresponsive patients that exhibited the minor allele of rs563535954 tended to be classified into the low-risk group (based on previously reported risk scores) for prediction of IVIG-resistance. Therefore, IVIG-unresponsiveness associated with the minor allele of rs563535954 might differ from IVIG-unresponsiveness associated with previous risk factors used to evaluate IVIG-unresponsiveness in KD.ConclusionThese findings suggest that the SNV rs563535954 could serve as a predictive indicator of IVIG-unresponsiveness, thereby improving the sensitivity of risk scoring systems, and may aid in prevention of coronary artery lesions in KD patients.

Highlights

  • Kawasaki disease (KD) is a systemic vasculitis which may be associated with coronary artery aneurysms

  • Pooled genome sequencing of cytokine receptors in IVIGunresponsive KD patients Genome-wide association studies of KD extracted several susceptibility gene loci related to KD; single nucleotide polymorphisms (SNPs) in the loci were identified as risk factors that affected KD

  • We pooled the genomes of 30 KD patients who received treatment with intravenous immunoglobulin (IVIG) plus aspirin within the first 8 days of fever onset and a second IVIG therapy, but who remained unresponsive to the second treatment

Read more

Summary

Introduction

Kawasaki disease (KD) is a systemic vasculitis which may be associated with coronary artery aneurysms. A notable risk factor for the development of coronary artery aneurysms is resistance to intravenous immunoglobulin (IVIG) therapy, which comprises standard treatment for the acute phase of KD. The development of coronary artery aneurysms has been observed in 20–25% of untreated KD patients [5, 6], treatment with intravenous immunoglobulin (IVIG) plus aspirin within the first 10 days of fever onset prevented coronary artery abnormalities [7,8,9]. Recent studies of refractory KD in Japan and Korea reported that 147/621 patients (23.7%) and 71/588 patients (12.1%), respectively, were unresponsive to initial IVIG therapy; of the unresponsive patients, 48 (7.7% of the total patients) and nine (1.5% of the total patients), respectively, remained resistant to a second dose of IVIG [14, 15]. We screened single nucleotide variants (SNVs) as potential risk factors in KD patients resistant to a second dose of IVIG and found that a lowfrequency variant located in the IL4R locus was associated with IVIG-unresponsiveness in KD patients

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call