Abstract
The interior low-frequency electromagnetic dipole excitation of a dielectric sphere is utilized as a simplified but realistic model in various biomedical applications. Motivated by these considerations, in this paper, we investigate analytically a near-field inverse scattering problem for the electromagnetic interior dipole excitation of a dielectric sphere. First, we obtain, under the low-frequency assumption, a closed-form approximation of the series of the secondary electric field at the dipole’s location. Then, we utilize this derived approximation in the development of a simple inverse medium scattering algorithm determining the sphere’s dielectric permittivity. Finally, we present numerical results for a human head model, which demonstrate the accurate determination of the complex permittivity by the developed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.