Abstract

BackgroundIntra-arterial thrombectomy is the main treatment for acute ischemic stroke due to large vessel occlusions and can consist in mechanically removing the thrombus with a stent-retriever. A cause of failure of the procedure is the fragmentation of the thrombus and formation of micro-emboli, difficult to remove. This work proposes a methodology for the creation of a low-dimensional surrogate model of the mechanical thrombectomy procedure, trained on realizations from high-fidelity simulations, able to estimate the evolution of the maximum first principal strain in the thrombus. MethodA parametric finite-element model was created, composed of a tapered vessel, a thrombus, a stent-retriever and a catheter. A design of experiments was conducted to sample 100 combinations of the model parameters and the corresponding thrombectomy simulations were run and post-processed to extract the maximum first principal strain in the thrombus during the procedure. Then, a surrogate model was built with a combination of principal component analysis and Kriging. ResultsThe surrogate model was chosen after a sensitivity analysis on the number of principal components and was tested with 10 additional cases. The model provided predictions of the strain curves with correlation above 0.9 and a maximum error of 28%, with an error below 20% in 60% of the test cases. ConclusionsThe surrogate model provides nearly instantaneous estimates and constitutes a valuable tool for evaluating the risk of thrombus rupture during pre-operative planning for the treatment of acute ischemic stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.