Abstract
This paper presents an extension of a recently developed low-dimensional modeling approach for normal human gait to the modeling of asymmetric gait. The asymmetric model is applied to analyze the gait dynamics of a transtibial prosthesis user, specifically the changes in joint torque and joint power costs that occur with variations in sagittal-plane alignment of the prosthesis, mass distribution of the prosthesis, and roll-over shape of the prosthetic foot being used. The model predicts an increase in cost with addition of mass and a more distal location of the mass, as well as the existence of an alignment at which the costs are minimized. The model's predictions also suggest guidelines for the selection of prosthetic feet and suitable alignments. The results agree with clinical observations and results of other gait studies reported in the literature. The model can be a useful analytical tool for more informed design and selection of prosthetic components, and provides a basis for making the alignment process systematic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.