Abstract

This article presents a low detent force double-sided permanent-magnet synchronous linear motor (DS-PMSLM), which contains two flat-type stators and a mover. The mover is constituted of a fiberglass support plate and Halbach array permanent magnets attached on both surfaces of this plate, which provides a large thrust force and low mover mass for high dynamic response. For the sake of reducing the thrust ripple, a modulation method of the cogging and end forces is proposed based on the destructive interference. The even-order harmonics in cogging and end forces are reduced by adjusting the width of the side slots and the lengths of end teeth, respectively. In order to reduce the odd-order harmonics of the detent force, the cogging force and end force are modulated to reverse phases and identical amplitudes by changing the equivalent lengths of four end teeth. An integrated subdomain analytical model considering the cogging and end effects is built to optimize five structural parameters of the stators for low detent force. Finally, the prototype and testing platforms are set up and the experimental results validate that the proposed DS-PMSLM can achieve a low thrust ripple of less than 1.5 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$ \%$</tex-math></inline-formula> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.